

PUMP INVERTER TECHNOLOGY

PUMP INVERTER TECHNOLOGY

Maximising efficiency to save energy & money

Will Dando F.I.S.P.E.

Introduction

- Will Dando Plastica Limited
- Variable Speed Pumps motor control
- Selecting and selling the correct pump
- SPATA Workshop & CPD points
- Questions? Stand D34

Topics

- Circulation
- Controlling speed of flow
- Variable Frequency Inverters
- Choices
- Set up
- Payback

What does pool circulation do?

- Circulation is an integral part of a swimming pool
 - Filtering
 - Disinfecting
 - Heating
 - Protect from freezing

What does pool circulation do?

It stops it being a POND!

What actions does a pool pump do?

- Prime
- Filter
- Backwash filter
- Flush filter

- Circulate
- Vacuum
- Waste
- Frost protection

The perfect pump

- Circulate daily slow economical speed
- Blast dirt from the filter fluidise sand bed
- Give control when vacuuming
- Tick over during Winter frost protection

Can one pump do is all?

- Filter 60% 80%
- Waste 80% 100%
- Backwash & Flush 100%
- Vacuuming 40% 100%
- Circulate
 - After backwash 40% 70%
 - Frost protection 10% 20%

Can one car do is all?

- Motorway driving constant 70mph
- Delivering bricks large load
- Popping to the shops stop start, small load
- Sunday drive out economic & efficient

The perfect car / pump

Altering pump speed

- Over rev a small pump?
 - Not a good idea to go faster than top speed!
 - Pipework, filter and equipment is chosen to handle maximum flow
- Slow the flow

The ways to alter the pump flow

- Choke the flow by closing valves
 - Like driving with handbrake on
- Alter impeller efficiency, size or shape
 - Would entail re-build
 - Only possible to pick one new flow

The ways to alter the pump flow

- Choke the flow by closing valves
- Alter impeller efficiency, size or shape

- Pump motors all spin at same speed 2800 rpm
- Bigger motor allows it to maintain speed while shifting more water

WET END v MOTORS

Direct current (d.c.) motors

- Reduce or increase voltage
- Variable resistor HEAT
- If motor is slowed by load, amps increase
- Large dc motors need huge control unit

Alternating current motors—Single phase

Asynchronous A. C.
Induction Motors

 Single phase requires second start winding

Alternating current motors—Three phase

Asynchronous A. C.
Induction Motors

Three phase

50_{Hz} Alternating current

50_{Hz} Alternating current

Power & Energy

- kW Kilowatts
- A rate of POWER

- kW/h Kilowatt hours
- A physical amount of ENERGY used

Power & Energy

Alternating current

Throttle the supply using thyristor

- A.C. is smoothed to D.C.
- Pulsed out to mimic a sine wave A.C. #
- Three phase or single phase current

Single phase

- Three phase
 - Much more efficient at slower speeds

- Why now?
 - Compact Disc technology
 - Digital Analogue conversion
 - Digital file to sound waves
 - Same but handles much more power

- Micro-processor controlled
- Software makes it programmable
- Can be as simple or adaptable as required
- Advanced features

Advanced features

- Multiple set speeds to variable speed
- Soft start & soft stop
- Overload protection
- Power boost on start up or in the waveform
- Very advanced features!

The Advantage

The Advantage

- Power saved
- = Energy saved
- = Money saved
- Never 100% efficient
 - Energy cannot be created or destroyed, it can only be changed from one form to another. — Einstein

The Advantage

- Power saved
- = Energy saved
- = Money saved

To be revisited......

What is available?

What is available?

The importance of Set Up

- What is the routine now?
- What does the pool require?
 - Filtration
 - Heating
 - Disinfecting
 - Protection
- Changes may be beneficial

Balancing the tasks

- Filtering
- Heating
- Disinfecting
- Protection from freezing

Balancing the tasks

- Filtering
 - Slower is better but turnover must be maintained
- Heating
 - Must be sufficient to hold shut the flow switch
- Disinfecting
 - Flow times will affect erosion feeders
- Protection from freezing

- Filtration volume must be maintained
 - The correct rate for the filter and turnovers have been set to keep pool clean and safe
 - Flow switches will need sufficient flow to operate
- Efficiency
- Example

- Filtration volumes must be maintained
 - Slower rate does give increased filtration efficiency
 - 4-6 hour turnover
 - Two turnover in 24 hours

- Six hour turnover
 - Pump runs 12 hrs per day
 - Two turnover in 24 hour period
- Drop pump to 75% flow
 - Run for 16 hours
 - Pump draws?

The Advantage

- Power saved
- = Energy saved
- = Money saved

The Advantage

- Six hour turnover
 - Pump runs 12 hrs per day
 - Two turnover in 24 hours
- Drop pump to 75% flow
 - Run for 16 hours
 - Pump draws 42% of original power

• Drop pump by 25% flow

 $^{\circ}$ Pump drops by 58% of original power

Why is it difficult to go FAST?

- Car
 - Aerodynamics
- Pool Flow
 - Pipe friction etc.
- Sound
 - Two x Watts input power for 10% increase in sound volume

	Hours	Pump		Per	Per		Days	per year
	Per Day	RPM	KW	Hour	Day			365
Standard pump	12	2800	1.04	£ 0.15	£	1.75	£	637.73
Pump with inverter	4	2800	1.04	£ 0.15	£	0.58	£	212.58
	0	2100	0.76	£ 0.11	£	-	£	-
	4	1700	0.60	£ 0.08	£	0.34	£	123.29
		1400	0.40	£ 0.06	£	-	£	-
	8	1200	0.31	£ 0.04	£	0.35	£	127.55
price per unit of electricuty	0.14			Total	£	1.27	£	463.42

Savings per Day	£ 0.48
Savings per year	£ 174.31

	Hours	Pump		Per	Per		Days	per year
	Per Day	RPM	KW	Hour	Day			365
Standard pump	12	2800	1.04	£ 0.15	£	1.75	£	637.73
		1						
Pump with inverter	0	2800	1.04	£ 0.15	£	-	£	-
	0	2100	0.76	£ 0.11	£	-	£	-
	0	1700	0.60	£ 0.08	£	-	£	-
	16	1400	0.40	£ 0.06	£	0.89	£	323.12
	0	1200	0.31	£ 0.04	£	_	£	-
price per unit of electricuty	0.14			Total	£	0.89	£	323.12

Savings per Day	£ 0.86
Savings per year	£ 314.61

£314.61

Conclusion

- Emission and energy conscious regulations
- Cost of the technology decreasing
- Smart technology remote control USP

Conclusion

- Emission and energy conscious regulations
- Cost of the technology decreasing
- Smart technology remote control USP

Thank you for listening

Questions

PUMP INVERTER TECHNOLOGY

Thank you (again) for listening

Will Dando F.I.S.P.E.

